Yesterday I spent alot of time reading forum posts on another site by a guy named Microbeman who is also the owner of a page I have read and possibly quoted here somewhere or another by the name of Microbe Organics. I wont go and do a bunch of Copy/Pasting of his posts because there are many but I am going to share one long one here now which is relevant to my journal at this point.
Recipes and Technique;
In case I have not been clear enough above, our goal in making ACT is to extract, multiply and grow mostly aerobic microorganisms in as large a diversity as possible and inclusive of three basic groups; bacteria/archaea, protozoa [flagellates & naked amoebae] and fungi. (Some [vermi]compost will contain rotifers which are extracted into ACT. These cycle nutrients in similar fashion to protozoa and are a bonus if present.)
Making ACT is not about putting in ingredients which directly benefit the plants. The foodstocks used are strictly to feed or benefit the microorganisms which in turn benefit the plants.
When I jumped on the compost tea bandwagon years back I utilized the whole gambit of ingredients recommended by the current (at that time) supposed authorities. These ingredients or foodstocks included, humic acid, kelp meal, black strap molasses, baby oatmeal (oat flour), fish hydrolysate, alfalfa meal, etc. We used variations of these ingredients in our 1200 gallon ACT maker on our farm and microscopic observation showed success.
I also experimented with using some rock/clay powders as ingredients and observed differences in the microbial make up which had positive results applied to the soil and plants. The types used were mostly soft rock phosphate and pyrophyllite.
Along the line somewhere we left humic acid out of a brew and noticed an increase in microbial numbers so we stopped using it ourselves but, possibly irresponsibly, I continued to recommend it because the ‘bigwigs’ did so. It was not until I devised a method to test each foodstock independently that I began to change my tune and begin to go against the grain of the contemporary experts.
By testing some ingredients independently in a liquid I observed;
1/ that humic acid in varying dilutions does not feed any sort of microscopically visible microbe. I observed that it actually suppresses microbial division and growth. This was confirmed by joint testing with Keep It Simple Inc. (KIS) in the Seattle area. We tested two of the most effective and popular brands. I cannot say definitively that all brands of humic acid will have similar suppressive effects in a liquid (ACT) but it is enough for me to discontinue using it or recommending it as an ACT foodstock. Please note that this does not mean that it is not good to use on/in soil….just not ACT.
2/ that kelp meal initially delays all microbial development in a liquid but does feed fungi and bacteria/archaea following 24 hours. If too much is used the effects are suppressive. From this I garnered that it should be used very sparingly and one must be prepared to brew a little longer if using this foodstock. Again, this does not mean that kelp meal is not a good thing to use in/on soil. It definitely is!
3/ black strap molasses (BSM) feeds both bacteria/archaea and fungi equally well contrary to what the A(A)CT aficionados were saying. The story was that BSM feeds only bacteria. This led to all sorts of misconceptions, even including ones made by USDA and Canada Agriculture scientists who declared that using molasses in ACT could lead to e-coli contamination. It is utter nonsense. Besides the testing I have done and ratifying assays carried out by KIS, it is common knowledge amongst many mycologists like Paul Stamets that BSM grows out fungal hyphae just fine.
4/ fish hydrolysate feeds both fungi and bacteria/archaea again contrary to the story at the time that it is mainly a fungal food. (I’m glad to see that story has now changed)
5/ alfalfa meal is also a decent all round foodstock which sometimes introduces protozoa cysts to the ACT. KIS has done more testing on this than I have.
The result of all this is that my attitude towards recipes for ACT has really evolved over the years with a trend towards the more simple. I know that there are a lot of people who place importance on creating a bacterial or fungal dominant ACT. At one time I myself was so influenced, however, the more I’ve learned and unlearned about living soil and a functioning microbial population interacting with plants, the more I’ve been led to allow the soil and plants to decide which microbes are actively needed by the rhyzosphere team.
What this means is that 9 times out of 10 I’m trying to create a balanced ACT with a decent ratio of the three basic microbial groups. When this hits the soil, some will go dormant to wake up later and some will be immediately put into action at the direction of the needs of the soil and plants.
The exceptions to this may be if I am attempting to battle a particular pathogen and want to attack it with a heavy fungal or bacterial (or a combo) ACT. In these situations some tweaking of recipes and timing can be helpful. If attempting these variations, a microscope is really the only way to confirm the desired microbial population. I have outlined some recipes which may trend towards a certain microbial group (or combo) or may assist with certain pathogens.
Recipes;
Through a plethora of trial and error brewing with a dissolved oxygen meter at hand we determined that a pretty reliable volume of [vermi]compost to use is 2.38% by volume of water used up to around a 250 gallon brewer.
So if you have 5 gallons you multiply that by 2.38% to get the amount of [vermi]compost to use. Then you can go to; Online Conversion - Volume Conversion and convert it into any unit of measure which is convenient. In my opinion measuring [vermi]compost by weight is inaccurate because of varying moisture content.
Anyway to proceed we have;
5 x 2.38% = 0.119 of a gallon = 0.476 of a quart = 0.450 of a liter
= 450.5 milliliters [450 rounded] = 1.904 cups [2 cups rounded] - Your choice
Likewise with the use of black strap molasses, a percentage of 0.50% is a good median amount to use.
These two ingredients, perhaps surprisingly, comprise the total of inputs in most of our brews these days. This simple recipe, if using an efficient ACT maker and good quality [vermi]compost results in a microbial population made up of the important three groups. This is the only recipe used to date, in all the videos on my Youtube channel ‘Microbe Organics’
To get these three groups the ACT maker should be run for 36 to 42 hours. The ideal temperature range is 65 to 72 Fahrenheit (18 to 22 Celsius), however a little cooler or warmer is okay. I’ve had pretty equivalent results with ambient temperatures around 100 F (38 C) and as cool as 50 F (10 C).
To spill a small secret, [which I hope will not preclude you purchasing the related downloadable video on my webpage in the upcoming future, once I figure how to do it
] I’ve been pre-feeding or pre-activating [vermi]compost which is not so fresh by mixing in a small amount of wheat bran (livestock store or bulk foods department grocery store) and moistening with very diluted black strap molasses, loosely covered with cloth or paper towel 24 hours ahead of brew. (approximate ratios, wheat bran 1:30 [vermi]compost & BSM 1:300 water).
This has, so far resulted in attaining the desired microbial population at 24 hours brew time rather than the usual 36 to 42 hours.
Now for some of my other recipes;
A recipe for a balanced nutrient cycling ACT which many growers claim to have great success with is;
[vermi]compost – 2.38%
unsulphured pure black strap molasses - 0.50% [but you can use a maximum 0.75%]
fish hydrolysate (high quality) - 0.063%
Do not use chemically deodorized liquid fish!
kelp meal - 0.25% max. [Less is more!]
NOTE: This is a maximum amount of kelp and you can experiment using less. This is using regular grade kelp meal for livestock. If you have soluble kelp, I recommend using smaller amounts. As noted earlier kelp meal can initially delay bacterial multiplication and fungal growth in ACT.
soft rock phosphate granules/powder - 0.063% Consider this optional. In the past 2 years I’ve become more aware of the possibility of polonium 210 and lead content in soft rock phosphate which is radioactive. This varies depending on how it was mined and where. If you wish to use this in ACT check all available data. Look for heavy metal testing
We grind up the granules into a powder with a coffee grinder
The brew time should average around 36 hours and no longer than 48 hours. If you have a microscope then stop when the microbes desired are observed. Otherwise smell for the foodstocks being used up, possible rank odor (indicating anaerobes) and a positive earthy or mushroom-like aroma.
Fungal Brew;
If you want a brew which is more fungal increase the amount of fish hydrolysate to around 0.19% and you may wish to decrease the amount of molasses used so there is not a foodstock overload. Include a pinch [or handful, depending on brewer size] of alfalfa meal, not using more than 0.25%. It is important to not overload a brew with foodstocks, otherwise you can easily compromise the dissolved oxygen capacity of the unit.
>Most importantly discontinue brewing around 18 to 20 hours. Of course if you have a microscope you can judge that for yourself.
*Also, if you do not have fungi in your [vermi]compost, you won’t have it magically appear in your ACT.
A Few Extras;
I sometimes include a pinch or handful [depending on brewer size] of sphagnum peatmoss in a brew. Depending on where the peatmoss was harvested, it will contribute a set of microbes somewhat similar to that derived from the ‘Alaska’ humus or humisoil products on the market. It is a least a better bang for your buck and at best could be a trifle better quality-wise.
I’ve had inconsistent success battling powdery mildew by including soft rock phosphate and pyrophyllite clay powder, both at 0.063% in a 24 hour brew with horse manure fed vermicompost, BSM and fish hydrolysate. I have observed a peanut shaped bacteria/archaea in vast numbers with this recipe. In the ACT they are very active and appear to feed on yeast. This has led me to hypothesize that they ‘might’ be devouring powdery mildew but at this point that is pure conjecture.
So that’s it for today.
EDIT** I stated the website as Gardening with Microbes but it is actually Microbe Organics. Both are mentioned in the forum I was reading and both have great info.