Truth Seeker
New Member
Abstract
Here we show that the activation of cannabinoid CB2 receptors improved glucose tolerance after a glucose load. Blockade of cannabinoid CB2 receptors counteracted this effect, leading to glucose intolerance. Since blockade of cannabinoid CB1 receptors mimics the actions of cannabinoid CB2 receptor agonists, we propose that the endocannabinoid system modulates glucose homeostasis through the coordinated actions of cannabinoid CB1 and CB2 receptors. We also describe the presence of both cannabinoid CB1 and CB2 receptor immunoreactivity in rat pancreatic β- and non-β-cells, adding the endocrine pancreas to adipose tissue and the liver as potential sites for endocannabinoid regulation of glucose homeostasis.
Source: ScienceDirect.com - European Journal of Pharmacology - Role of cannabinoid CB2 receptors in glucose homeostasis in rats
Here we show that the activation of cannabinoid CB2 receptors improved glucose tolerance after a glucose load. Blockade of cannabinoid CB2 receptors counteracted this effect, leading to glucose intolerance. Since blockade of cannabinoid CB1 receptors mimics the actions of cannabinoid CB2 receptor agonists, we propose that the endocannabinoid system modulates glucose homeostasis through the coordinated actions of cannabinoid CB1 and CB2 receptors. We also describe the presence of both cannabinoid CB1 and CB2 receptor immunoreactivity in rat pancreatic β- and non-β-cells, adding the endocrine pancreas to adipose tissue and the liver as potential sites for endocannabinoid regulation of glucose homeostasis.
Source: ScienceDirect.com - European Journal of Pharmacology - Role of cannabinoid CB2 receptors in glucose homeostasis in rats