Truth Seeker
New Member
Abstract
An emerging body of evidence supports a key role for the endocannabinoid system in numerous physiological and pathological mechanisms of the central nervous system. In the recent past, many experimental studies have examined the putative protective or toxic effects of drugs interacting with cannabinoid receptors or have measured the brain levels of endocannabinoids in in vitro and in vivo models of cerebral ischemia. The results of these studies have been rather conflicting in supporting either a beneficial or a detrimental role for the endocannabinoid system in post-ischemic neuronal death, in that cannabinoid receptor agonists and antagonists have both been demonstrated to produce either protective or toxic responses in ischemia, depending on a number of factors. Among these, the dose of the administered drug and the specific endocannabinoid that accumulates in each particular model appear to be of particular importance. Other mechanisms that have been put forward to explain these discrepant results are the effects of cannabinoid receptor activation on the modulation of excitatory and inhibitory transmission, the vasodilatory and hypothermic effects of cannabinoids, and their activation of cytoprotective signaling pathways. Alternative mechanisms that appear to be independent from cannabinoid receptor activation have also been suggested. Endocannabinoids probably participate in the mechanisms that are triggered by the initial ischemic stimulus and lead to delayed neuronal death. However, further information is needed before pharmacological modulation of the endocannabinoid system may prove useful for therapeutic intervention in stroke and related ischemic syndromes.
Source: Post-ischemic brain damage: the endocannabinoid syste... [FEBS J. 2009] - PubMed - NCBI
An emerging body of evidence supports a key role for the endocannabinoid system in numerous physiological and pathological mechanisms of the central nervous system. In the recent past, many experimental studies have examined the putative protective or toxic effects of drugs interacting with cannabinoid receptors or have measured the brain levels of endocannabinoids in in vitro and in vivo models of cerebral ischemia. The results of these studies have been rather conflicting in supporting either a beneficial or a detrimental role for the endocannabinoid system in post-ischemic neuronal death, in that cannabinoid receptor agonists and antagonists have both been demonstrated to produce either protective or toxic responses in ischemia, depending on a number of factors. Among these, the dose of the administered drug and the specific endocannabinoid that accumulates in each particular model appear to be of particular importance. Other mechanisms that have been put forward to explain these discrepant results are the effects of cannabinoid receptor activation on the modulation of excitatory and inhibitory transmission, the vasodilatory and hypothermic effects of cannabinoids, and their activation of cytoprotective signaling pathways. Alternative mechanisms that appear to be independent from cannabinoid receptor activation have also been suggested. Endocannabinoids probably participate in the mechanisms that are triggered by the initial ischemic stimulus and lead to delayed neuronal death. However, further information is needed before pharmacological modulation of the endocannabinoid system may prove useful for therapeutic intervention in stroke and related ischemic syndromes.
Source: Post-ischemic brain damage: the endocannabinoid syste... [FEBS J. 2009] - PubMed - NCBI