Jacob Bell
New Member
Fokos S, Panagis G
Abstract
Although cannabis derivatives produce clear subjective motivational responses in humans leading to drug-seeking behaviour, the reinforcing attributes of these subjective effects are difficult to define in experimental animals. The aim of this study was to examine how exposure to chronic unpredictable stress (CUS) will affect reward function and anxiety after acute administration of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in rats. Male rats were exposed to either 10 days of CUS or no stressor. Alterations in brain reward function were assessed with the intracranial self-stimulation (ICSS) paradigm, and anxiety responses were measured with the elevated plus maze. CUS did not affect baseline brain stimulation reward thresholds. Delta(9)-THC did not exhibit reinforcing actions in the ICSS paradigm neither in nonstressed nor in stressed animals. More importantly, in nonstressed animals, both the low and the high dose of Delta(9)-THC exerted anxiolytic-like effects. In stressed animals, however, only the high dose of THC induced an anxiolytic-like response, whereas the low dose induced anxiogenic effects. The present results provide clear evidence for an anxiolytic effect of Delta(9)-THC both in stressed and in nonstressed animals, and indicate that environmental conditions, such as stressful experiences, do not alter the behavioural effects of Delta(9)-THC in the ICSS paradigm.
Source: Effects of {Delta}9-tetrahydrocannabinol on reward and anxiety in rats exposed to chronic unpredictable stress
Abstract
Although cannabis derivatives produce clear subjective motivational responses in humans leading to drug-seeking behaviour, the reinforcing attributes of these subjective effects are difficult to define in experimental animals. The aim of this study was to examine how exposure to chronic unpredictable stress (CUS) will affect reward function and anxiety after acute administration of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in rats. Male rats were exposed to either 10 days of CUS or no stressor. Alterations in brain reward function were assessed with the intracranial self-stimulation (ICSS) paradigm, and anxiety responses were measured with the elevated plus maze. CUS did not affect baseline brain stimulation reward thresholds. Delta(9)-THC did not exhibit reinforcing actions in the ICSS paradigm neither in nonstressed nor in stressed animals. More importantly, in nonstressed animals, both the low and the high dose of Delta(9)-THC exerted anxiolytic-like effects. In stressed animals, however, only the high dose of THC induced an anxiolytic-like response, whereas the low dose induced anxiogenic effects. The present results provide clear evidence for an anxiolytic effect of Delta(9)-THC both in stressed and in nonstressed animals, and indicate that environmental conditions, such as stressful experiences, do not alter the behavioural effects of Delta(9)-THC in the ICSS paradigm.
Source: Effects of {Delta}9-tetrahydrocannabinol on reward and anxiety in rats exposed to chronic unpredictable stress