Truth Seeker
New Member
BACKGROUND/AIMS:
Endocannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid-related molecules like oleoyl-ethanolamine (OEA) and palmitoyl-ethanolamine (PEA) have also been identified. AEA contributes to the pathogenesis of cardiovascular alterations in experimental cirrhosis, but data on the endocannabinoid system in human cirrhosis are lacking. Thus, we aimed to assess whether circulating and hepatic endocannabinoids are upregulated in cirrhotic patients and whether their levels correlate with systemic haemodynamics and liver function.
METHODS:
The endocannabinoid levels were measured in peripheral and hepatic veins and liver tissue by isotope-dilution liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Systemic haemodynamics were assessed by the transthoracic electrical bioimpedance technique. Portal pressure was evaluated by hepatic venous pressure gradient.
RESULTS:
Circulating AEA and, to a greater extent, PEA and OEA were significantly higher in cirrhotic patients than in controls. PEA and OEA were also increased in the cirrhotic liver tissue. AEA, OEA and PEA levels were significantly higher in peripheral than in the hepatic veins of cirrhotic patients, while the opposite occurred for 2-AG. Finally, circulating AEA, OEA and PEA correlated with parameters of liver function, such as serum bilirubin and international normalized ratio. No correlations were found with systemic haemodynamics.
CONCLUSIONS:
The endocannabinoid system is upregulated in human cirrhosis. Peripheral AEA is increased in patients with a high model of end-stage liver disease score and may reflect the extent of liver dysfunction. In contrast, the 2-AG levels, the other major endocannabinoid, are not affected by cirrhosis. The upregulation of the endocannabinoid-related molecules, OEA and PEA, is even greater than that of AEA, prompting pharmacological studies on these compounds.
Source: Pubmed.gov
Endocannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid-related molecules like oleoyl-ethanolamine (OEA) and palmitoyl-ethanolamine (PEA) have also been identified. AEA contributes to the pathogenesis of cardiovascular alterations in experimental cirrhosis, but data on the endocannabinoid system in human cirrhosis are lacking. Thus, we aimed to assess whether circulating and hepatic endocannabinoids are upregulated in cirrhotic patients and whether their levels correlate with systemic haemodynamics and liver function.
METHODS:
The endocannabinoid levels were measured in peripheral and hepatic veins and liver tissue by isotope-dilution liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Systemic haemodynamics were assessed by the transthoracic electrical bioimpedance technique. Portal pressure was evaluated by hepatic venous pressure gradient.
RESULTS:
Circulating AEA and, to a greater extent, PEA and OEA were significantly higher in cirrhotic patients than in controls. PEA and OEA were also increased in the cirrhotic liver tissue. AEA, OEA and PEA levels were significantly higher in peripheral than in the hepatic veins of cirrhotic patients, while the opposite occurred for 2-AG. Finally, circulating AEA, OEA and PEA correlated with parameters of liver function, such as serum bilirubin and international normalized ratio. No correlations were found with systemic haemodynamics.
CONCLUSIONS:
The endocannabinoid system is upregulated in human cirrhosis. Peripheral AEA is increased in patients with a high model of end-stage liver disease score and may reflect the extent of liver dysfunction. In contrast, the 2-AG levels, the other major endocannabinoid, are not affected by cirrhosis. The upregulation of the endocannabinoid-related molecules, OEA and PEA, is even greater than that of AEA, prompting pharmacological studies on these compounds.
Source: Pubmed.gov