Jacob Bell
New Member
Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications
Onaivi ES.
Source
Department of Biology, William Paterson University, Wayne, New Jersey 07470, USA.
Abstract
Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the ECS plays in the retrograde signaling associated with cannabinoid inhibition of neurotransmitter release to the genetic basis of the effects of marijuana use and pharmacotherpeutic applications and limitations. Much evidence is provided for the complex CNR1 and CNR2 gene structures and their associated regulatory elements. Thus, understanding the ECS in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.
Source: Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications
Onaivi ES.
Source
Department of Biology, William Paterson University, Wayne, New Jersey 07470, USA.
Abstract
Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the ECS plays in the retrograde signaling associated with cannabinoid inhibition of neurotransmitter release to the genetic basis of the effects of marijuana use and pharmacotherpeutic applications and limitations. Much evidence is provided for the complex CNR1 and CNR2 gene structures and their associated regulatory elements. Thus, understanding the ECS in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.
Source: Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications